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Abstract

The conventional approach to routing in computer networks con-
sists of using a heuristic to compute a single shortest path from
a source to a destination. Single-path routing is very responsive
to topological and link-cost changes; however, except under light
traffic loads, the delays obtained with this type of routing are far
from optimal. Furthermore, if link costs are associated with de-
lays, single-path routing exhibits oscillatory behavior and becomes
unstable as traffic loads increase. On the other hand, minimum-
delay routing approaches can minimize delays only when traffic is
stationary or very slowly changing.

We present a “near-optimal” routing framework that offers de-
lays comparable to those of optimal routing and that is as flexible
and responsive as single-path routing protocols proposed to date.
First, an approximation to the Gallager’s minimum-delay routing
problem is derived, and then algorithms that implement the ap-
proximation scheme are presented and verified. We introduce the
first routing algorithm based on link-state information that provides
multiple paths of unequal cost to each destination that are loop-free
at every instant. We show through simulations that the delays ob-
tained in our framework are comparable to those obtained using the
Gallager’s minimum-delay routing. Also, we show that our frame-
work renders far smaller delays and makes better use of resources
than traditional single-path routing.

1 Introduction

The standard approach to routing in computer networks today con-
sists of computing a single shortest path from a source to each des-
tination using some heuristic link-cost metric, which is typically
not directly associated with the transmission and queueing delays
over links and paths. A less common approach to routing is that
of defining the routing problem as an optimization problem (e.g.,
multicommodity problem [5]) with a specific objective function,
such as minimizing delays or maximizing throughput, and solving
the problem using any of several known optimization techniques.
These two traditional approaches to routing have inherent strengths
and drawbacks.

In order to provide minimum delays, all optimal routing algo-
rithms require the input traffic and the network topology to be sta-
tionary or very slowly changing (quasi-static), and require a pri-
ori knowledge of global constants that guarantee convergence of
the routing algorithm. This makes optimal routing algorithms im-
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practical for real networks, because in real networks traffic is very
bursty at any time scale and the network topology frequently expe-
rience changes. Moreover, defining global constants that work for
all input traffic patterns are impossible to determine.

On the other hand, routing algorithms based on single shortest-
path heuristics adapt very quickly to changing network conditions,
making them far more preferable than optimal routing for imple-
mentation in real networks. The main shortcoming of single shortest-
path routing is that the delays achievable with such heuristics are
far longer than those achievable using optimal routing algorithms.
In addition, single-shortest-path routing becomes unstable under
heavy loads or very bursty traffic when the link cost metric used in
the routing algorithm is related to the delays or congestion experi-
enced over the links [3].

The fact that shortest-path routing over single paths is far less
efficient than optimal dynamic routing and the oscillatory behavior
of shortest-path routing when link costs are tied to link delays has
been known for many years. However, implementing optimal dy-
namic routing in a computer network has simply been infeasible to
date. The key contributions of this paper consist of: (a) introducing
a new framework for near-optimum delay routing; (b) verifying,
for the first time, a set of invariants that permit routing-algorithm
designers to approximate Gallager’s necessary and sufficient condi-
tions for minimum-delay routing with loop-free routing conditions
that can be achieved using distributed routing algorithms that do
not require any global variables or global synchronization; and (c)
showing an example that provides end-to-end delays that are com-
parable to the optimal, while being as fast as today’s shortest-path
routing schemes.

Section 2 presents the minimum-delay routing problem (MDRP)
as described by Gallager, and Gallager’s minimum-delay routing
algorithm [8]. Gallager’s algorithm is unsuitable for practical net-
works and internetworks, because its speed of convergence to the
optimal routes depends on a global constant, and because it requires
that the input traffic and network topology be stationary or quasi-
stationary.

Several algorithms have been proposed to date that improve
over Gallager’s minimum-delay routing algorithm [2, 6, 23, 24].
Segall and Sidi [23, 24] extended Gallager’s minimum-delay rout-
ing algorithm to handle topological changes using techniques de-
veloped by Merlin and Segall [19]. Cassandras et al. [6] present
a better technique for measuring marginal delays. Bertsekas and
Gallager [2] used second derivatives to speed up convergence of
Gallager’s algorithm. However, all these algorithms are still depen-
dent on global constants and the requirement that network traffic be
static or quasi-static.

Because of its oscillatory behavior when link costs are related
to delays, attempts to improving shortest-path routing have been
restricted mainly to using better link cost metrics (e.g., [18, 13])
or using multiple-paths. To avoid undetected loops, OSPF per-
mits multiple paths to a destination only when they have the same
length [20]. More recently, Zaumen and Garcia-Luna-Aceves [27]
proposed an algorithm based on distance vectors that supports mul-
tiple paths of unequal costs to each destination; however, link costs
are not tied to delays. Wang and Crowcroft [26] addressed the
drawbacks of the shortest-path first (SPF) algorithm by using alter-
nate paths to detour traffic around points of congestion or network
failures. However, the alternate paths in SPF-EE (for emergency
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exits) are computed on a reactive basis, i.e., once congestion oc-
curs, which is less effective in dealing with short bursts of traffic.

Cain et al. [4] describe a routing algorithm for minimizing de-
lays. However, this algorithm requires that the routing-table up-
dates at all the routers be synchronized, otherwise looping occurs,
which increases end-to-end delays. Because the synchronization
intervals required by this algorithm must be known by all routers,
this is akin to using a global constant as in Gallager’s algorithm.
This approach is not scalable to very large networks, because the
time needed for routing-table update synchronization becomes large,
and this in turn limits its responsiveness to short-term traffic fluc-
tuations. What is seriously lacking in this algorithm is a technique
for asynchronous computation of multiple paths with instantaneous
loop-freedom.

Section 3 presents a new framework for approximate solutions
to MDRP. The novelty of this framework stems from partitioning
the computation of minimum-delay paths in two parts. First, mul-
tiple loop-free paths of unequal cost to a destination are first es-
tablished using long-term link-cost information. This is followed
by the allocation of flows to destinations along the multiple loop-
free paths available at each router; such an allocation is based on
heuristics that attempt to minimize delays using short-term link-
cost information. It is this partitioning of MDRP that permits us
to implement routing algorithms that provide routers with near-
optimum delays while keeping the routing algorithm as responsive
to traffic or topology changes as the best of today’s shortest-path
routing algorithms. A set of invariants is also presented that per-
mits Gallager’s necessary and sufficient conditions for minimum-
delay routing to be approximated with loop-free routing conditions
achievable with simple distributed routing algorithms that do not
require any global variables or global synchronization.

Section 4 describes a specific routing algorithm based on our
new routing framework. This algorithm consists of two key compo-
nents: (a) the first link-state routing algorithm that provides multi-
ple loop-free paths of arbitrary positive cost at every instant, and (b)
flow allocation heuristics that approximate minimum delays along
the predefined multiple loop-free paths available for each destina-
tion.

Section 5 presents results of simulation experiments designed
to illustrate the effectiveness of our solution in static and dynamic
networks. We compare our approach against the optimal routing
approach and shortest-path routing based on Dijkstra’s shortest-
path first (SPF) algorithm, because it is used widely in the Internet
today. The simulation results illustrate that the routing delays ob-
tained with our new algorithm are comparable to the optimal de-
lays. Furthermore, the complexity of implementing our routing
framework is similar to the complexity of routing protocols that
provide single-path routing in the Internet today.

2 Minimum Delay Routing

2.1 Problem formulation

The minimum-delay routing problem (MDRP) was first formulated
by Gallager [8], and we provide the same description in this sec-
tion. A computer networkG = (N;L) is made up ofN routers
andL links between them. Each link is bidirectional with possibly
different costs in each direction.

Let rij � 0 be the expected input traffic, measured in bits per
second, entering the network at routeri and destined for routerj.
Let tij be the sum ofrij and the traffic arriving from the neighbors
of i for destinationj. And let routing parameter�ijk be the fraction
of traffic tij that leaves routeri over link (i; k). Assuming that the
network does not lose any packets, from conservation of traffic we
have

tij = rij +
X
k2Ni

tkj�
k
ji (1)

whereN i is the set of neighbors of routeri.

Let fik be the expected traffic, measured in bits per second, on
link (i; k). Becausetij�

i
jk is the traffic destined for routerj on link

(i; k) we have the following equation to findfik.

fik =
X
j2N

tij�
i
jk (2)

Note that0 � fik � Cik, whereCik is the capacity of link(i; k)
in bits per second.

Property 1 For each routeri and destinationj, the routing pa-
rameters�ijk must satisfy the following conditions:

1. �ijk = 0 if (i; k) =2 L or i = j. Clearly, if the link does not
exist, there can be no traffic on it.

2. �ijk � 0. This is true, because there can be no negative
amount of traffic allocated on a link.

3.
P

k2Ni �
i
jk = 1. This is a consequence of the fact that all

incoming traffic must be allocated to outgoing links.

Let Dik be defined as the expected number of messages or
packets per second transmitted on link(i; k) times the expected
delay per message or packet, including the queueing delays at the
link. We assume that messages are delayed only by the links of
the network andDik depends only on flowfik through link(i; k)
and link characteristics such as propagation delay and link capacity.
Dik(fik) is a continuous and convex function that tends to infinity
asfik approachesCik. The total expected delay per message times
the total expected number of message arrivals per second is given
by

DT =
X

(i;k)2L

Dik(fik) (3)

Note that the router traffic-flow sett = ftijg and link-flow set
f = ffikg can be obtained fromr = frijg and� = f�ijkg. There-
fore,DT can be expressed as a function ofr and� using Eqs. (1)
and (2). The minimum-delay routing problem can now be stated as
follows:

MDRP: For a given fixed topology and input traffic flow setr =
frijg, and delay functionDik(fik) for each link(i; k), the mini-
mization problem consists of computing the routing parameter set
� = f�ijkg such that the total expected delayDT is minimized.

2.2 A Minimum Delay Routing Algorithm

Gallager [8] derived the necessary and sufficient conditions that
must be satisfied to solve MDRP. These conditions are summarized
in Gallager’s Theorem stated below.

The partial derivatives of the total delay,DT , of Eq.(3) with
respect tor and� play a key role in the formulation and solution
of the problem; these derivatives are:

@DT

@rij
=
X
k2Ni

�ijk [D
0
ik(fik) +

@DT

@rk
j

] (4)

@DT

@�i
jk

= tij [D
0
ik(fik) +

@DT

@rk
j

] (5)

whereD0
ik(fik) = @Dik(fik)=@fik. and is called themarginal

delayor incremental delay.



Similarly,@DT =@r
i
j is called themarginal distancefrom router

i to j.

Gallager’s Theorem [8]: The necessary condition for a minimum
ofDT with respect to� for all i 6= j and(i; k) 2 L is

@DT

@�i
jk

=

�
= �ij �i

jk
> 0

� �ij �i
jk

= 0
(6)

where�ij is some positive number, and the sufficient condition to
minimizeDT with respect to� is for all i 6= j and(i; k) 2 L is

D0
ik(fik) +

@DT

@rkj
�
@DT

@rij
2 (7)

Eq. (4) shows the relation between a router’s marginal distance
to a particular destination and the marginal distances of its neigh-
bors to the same destination. Eqs. (5)-(7) indicate the conditions
for perfect load balancing, i.e., when the routing parameter set�
gives the minimum delay.

The set of neighbors through which routeri forwards traffic
towardsj is denoted bySij and is called thesuccessor set.1

Under perfect load balancing with respect to a particular desti-
nation, the marginal distances through neighbors in the successor
set are equal to the marginal distance of the router, and the marginal
distances through neighborsnot in the successor set are higher than
the marginal distance of the router.

LetDi
j denote themarginal distancefrom i to j, i.e.,@DT =@r

i
j .

Let themarginal delayD0
ik(fik) from i tok be denoted bylik which

is also called the cost of the link fromi to k.

According to Gallager’s Theorem, the minimum delay routing
problem now becomes one of determining, at each routeri for each
destinationj: the routing parametersf�ijkg, S

i
j andDi

j , such that
the following five equations are satisfied:

Di
j =

X
k2Ni

�ijk(D
k
j + lik) (8)

Sij = fkj�ijk > 0 ^ k 2 N ig (9)

Di
j � Dk

j + lik k 2 N i (10)

(Dp
j + lip) = (Dq

j + liq) p; q 2 Sij (11)

(Dp
j + lip) < (Dq

j + liq) p 2 Sij q =2 Sij (12)

This reformulation of MDRP is critical, because it is the first
step in allowing us to approach the problem by looking at the next-
hops and distances obtained at each router for each destination.
Gallager [8] described a distributed routing algorithm for solving
the above five equations. When the algorithm converges, the aggre-
gate of the successor sets for a given destinationj (Sij for everyi)
define a directed acyclic graph. In fact, in any implementation,Sij
must beloop-free at every instant, because even temporary loops
cause traffic to recirculate at some nodes and results in incorrect
marginal delay computations, which in turn can prevent the algo-
rithm from converging or obtaining minimum delays.

Gallager’s distributed algorithm uses an interesting blocking
technique to provide loop-freedom at every instant [8, 23, 24]. We
refer to this algorithm as OPT in the rest of the paper. Unfortu-
nately, OPT cannot be used in real networks for several reasons.
A major drawback of OPT is that a global step size� needs to be
chosen and every router must use it to ensure convergence. Be-
cause� depends on the input traffic pattern, it is impossible to de-
termine one in practice that works for all input traffic patterns and
for all possible topology modifications. The routing parameters
are directly computed by OPT and the multiple loop-free paths are

1The term successor set was first introduced in [27].

simply implied by the routing parameters in Eq. (9). The computa-
tion of routing parameters is, for all practical purposes, a very slow
process as it is a destination-controlled process. The destination
initiates every iteration that adjusts the routing parameters at every
router; furthermore, each iteration takes a time proportional to the
diameter of the network and number of messages proportional to
number of links. This renders the algorithm slow converging and
useful only when traffic and topology are stationary for times long
enough for all routers to adjust their routing parameters between
changes. Also, depending on the global constant�, the destina-
tion must initiate several iterations for the parameters to converge
to their final values. The number of such iterations needed for con-
vergence tends to be large for a small�, and small for a large value
of �. Unfortunately,� cannot be made arbitrarily large to reduce
the number of iterations and to speed up convergence, because the
algorithm may not converge at all for large values of�.

Hence, Gallager’s algorithm can be viewed only as a method
for obtaining lower bounds under stationary traffic, rather than as
an algorithm to be used in practice. The next section shows how
the theory introduced in the Gallager’s method can be adapted to
practical networks.

3 A New Framework for Minimum-Delay Routing

We noted that in Gallager’s algorithm the computation of the rout-
ing parameter set� is slow converging and works only in the case of
stationary or quasi-stationary traffic. In the Internet, traffic is hardly
stationary and perfect load balancing is neither possible nor neces-
sary. Intuitively, an approximate load balancing scheme based on
some heuristic which can quickly adapt to dynamic traffic should
be sufficient to minimize delays substantially.

The key idea in our approach is, in a sense, to reverse the way
in which Gallager’s algorithm solves MDRP. The intuition behind
our approach is that establishing paths from sources to destinations
takes a much longer time than shifting loads from one set of neigh-
bors to another, simply because of the propagation and processing
delays incurred along the paths. Accordingly, it makes sense to first
establish multiple loop-free paths using long-term (end-to-end) de-
lay information, and then adjust routing parameters along the pre-
defined multiple paths using short-term (local) delay information.

This new approach allows us to attempt to use distributed algo-
rithms to compute multiple loop-free paths from source to destina-
tion that, hopefully, are as fast as today’s single-path routing algo-
rithms, and local heuristics that can respond quickly to temporary
traffic bursts using local short-term metrics alone. Therefore, we
map Eqs. (8)-(12) derived in Gallager’s method into the following
three equations:

Di
j = minfDk

j + likjk 2 N ig (13)

Sij = fkjDk
j < Di

j ^ k 2 N ig (14)

�ijk = 	(k;Ai
j ; B

i
j) k 2 N i (15)

whereAi
j = fDp

j + lipjp 2 N ig andBi
j = f�ijpjp 2 N ig.

These equations simply state that, for an algorithm to approxi-
mate minimum-delay routing, it must establish loop-free paths and
use a function	 to allocate flows over those paths. We observe that
Eq. (13) is the well-known Bellman-Ford (BF) equation for com-
puting the shortest paths, and Eq. (14) is the successor set consist-
ing of the neighbors that are closer to the destination than the router
itself. Note that the paths implied by the neighbors in the successor
set of a router need not be of the same length. The function	 in
Eq. (15) is a heuristic function that determines the routing parame-
ters. Because changing the routing parameters effects the marginal
delay of the links (hence link-costs), we use regular updates of the
link costs.

The main problem with attempting to solve MDRP using Eqs.
(13) to (15) directly is that these equations assume that routing in-
formation is consistent throughout the network. In practice, a node
(router) must choose its distance and successor set using routing in-
formation obtained through its neighbors, and this information may



be outdated. At any timet, for a particular destinationj, the succes-
sor sets of all nodes define arouting graphSGj(t) = f(m;n)jn 2
Smj (t); m 2 Ng. In single-path routing,Sij(t) has at most one
neighbor: the neighbor that is on the shortest path to destinationj.
Accordingly,SGj(t) for single-path routing is a sink-tree rooted at
j if loops are never created. The routing graphSGj(t) in our case
should be a directed acyclic graph in order for minimum delays to
be approached.

The blocking technique used in Gallager’s algorithm ensures
instantaneous loop-freedom. Likewise, to provide loop-free paths
even when the network is in transient state within the context of our
framework, additional constraints must be imposed on the choice of
successors at each router, which essentially must preclude the use
of neighbors thatmaylead to looping.

Several algorithms have been proposed in the past to provide
loop-free paths at every instant for the case of single-path routing
(e.g., the Jaffe-Moss algorithm [15], DUAL [9], LPA [11], and the
Merlin-Segall algorithm [19]) and one algorithm, DASM, has been
proposed for the case of multiple paths per destination [27]. All
these algorithms are based on the exchange of vectors of distances,
together with some form of coordination among routers spanning
one or multiple hops. The coordination among routers determines
when the routers can update their routing tables. This coordina-
tion is in turn guided by local conditions that depend on values of
reported distances to destinations and that are sufficient to prevent
loops from occurring.

We generalize the work to date on loop-free routing over single
paths or multiple paths by means of the following loop-free invari-
ant (LFI ) conditions, which are applicable toany type of routing
algorithm. We adopt the same terminology and nomenclature first
introduced for DUAL [9] to describe the LFI conditions.

Loop-free Invariant (LFI) conditions: Any routing algorithm de-
signed such that the following two equations are always satisfied,
automatically provides loop-free paths at every instant, regardless
of the type of routing algorithm being used:

FDi
j � Dk

ji k 2 N i (16)

Sij = f k j Di
jk < FDi

j ^ k 2 N ig (17)

whereDi
jk is the value ofDk

j reported toi by its neighbork; and
FDi

j is called thefeasible distanceof routeri for destinationj and
is an estimate ofDi

j , in the sense thatFDi
j equalsDi

j in steady
state but is allowed to differ from it temporarily during periods of
network transitions.

In link-state algorithms, the values ofDi
jk are determined lo-

cally from the link-state information supplied by the router’s neigh-
bors; in contrast, in distance-vector algorithms, the distances are
directly communicated among neighbors. The following theorem
verifies this key result of our framework.

Theorem 1 If the LFI conditions are satisfied at any timet, the
routing graphSGj(t) implied by the successor setsSij(t) is loop-
free.

Proof: Let k 2 Sij(t) then from Eq. (17) we have

Di
jk(t) < FDi

j(t) (18)

At router k, because routeri is a neighbor, from Eq. (16) we
haveFDk

j (t) � Di
jk(t). Combining this result with Eq. (18) we

obtain

FDk
j (t) < FDi

j(t) (19)

Eq. (19) states that, ifk is a successor of routeri in a path to
destinationj, thenk’s feasible distance toj is strictly less than the
feasible distance of routeri to j. Now, if the successor sets define a

loop at timet with respect toj, then for some routerp on the loop,
we arrive atFDp

j (t) < FDp
j (t), an absurd relation. Therefore, the

LFI conditions are sufficient for loop-freedom.2
With the result of Theorem 1, Eq. (14) can be approximated

with the LFI conditions to render a routing approach that does not
require routing information to be globally consistent, at the expense
of rendering delays that may be longer than optimal. Accordingly,
our framework for near-optimum-delay routing lies in finding the
solution to the following equations using a distributed algorithm:

Di
j = minfDk

j + likjk 2 N ig (20)

FDi
j � Dk

ji k 2 N i (21)

Sij = f k jDi
jk < FDi

j ^ k 2 N
ig (22)

�ijk = 	(k; fDp
j
+ lipjp 2 N ig; f�ijpjp 2 N

ig) k 2 N i (23)

4 Implementing Near-Optimum-Delay Routing

We present an approach based on link-state information, rather than
distance information, because extending our results to minimum-
delay routing with additional constraints can be done more effi-
ciently by working with link parameters than path parameters, which
are the combination of link parameters. Our approach consists of
three components: computing multiple loop-free paths, distributing
traffic over such paths, and computing link costs.

4.1 Computing Multiple Loop-free Paths

We describe the computation of multiple loop-free paths in two
parts: computingDi

j using a shortest-path algorithm based on link-
state information, and computingSij by extending that algorithm to
support multiple successors along loop-free paths to each destina-
tion.

4.1.1 Computing Di
j

There are many distributed algorithms for computing shortest paths,
and any of them can be extended to provide multiple paths of equal
and unequal costs as long as the extension obeys the LFI conditions
introduced in the previous section.

The partial-topology dissemination algorithm (PDA) propagates
enough link-state information in the network, so that each router
hassufficientlink-state information to compute shortest paths to all
destinations. In this respect, it is similar to other link-state algo-
rithms (e.g., OSPF [20], SPTA [25], LVA [10], ALP [12]). PDA
combines the best features of LVA, ALP and SPTA. As in LVA and
ALP, a router communicates to its neighbors information regarding
only those links that are part of its minimum-cost routing tree, and
like SPTA, a router validates link information based on distances to
heads of links and not on sequence numbers.

PDA assumes that a router detects the failure, recovery and
link-cost change of an adjacent link within a finite amount of time.
An underlying protocol ensures that messages transmitted over an
operational link are received correctly and in the proper sequence
within a finite time and are processed by the router one at a time in
the order received. These are the same assumptions made for simi-
lar routing algorithms and can be easily satisfied in practice. Each
routeri running PDA maintains the following information:

1. The main topology table, T i, stores the characteristics of
each link known to routeri. Each entry inT i is a triplet
[h; t; d] whereh is the head,t is the tail andd is the cost of
the linkh! t.

2. The neighbor topology table, T i
k, is associated with each

neighbork. The table stores the link-state information com-
municated by the neighbork. That is,T i

k is a time-delayed
version ofT k.



procedure INIT-PDA
fInvoked when the router comes up.g
begin

Initialize all tables;
call PDA;

end INIT-PDA

procedure PDA
fExecuted at each routeri. Invoked when an event occursg
begin

(1) call NTU;
(2) call MTU; /* UpdatesT i */
(3) if (there are changes toT i) then

Compose an LSU message consisting of topology
differences usingadd, delete
andchangelink entries;

endif
(4) Within a finite amount time, send the

LSU message to all neighbors;
end PDA

Figure 1: The Partial-topology Dissemination Algorithm

3. Thedistance tablestores the distances from routeri to each
destination based on the topology inT i and the distances
from each neighbork to each destination based on the topolo-
gies inT i

k for eachk. The distance of routeri to nodej in T i

is denoted byDi
j ; the distance fromk to j in T i

k is denoted
byDi

jk.

4. Therouting tablestores, for each destinationj, the succes-
sor setSij and the feasible distanceFDi

j , which is used by
MPDA to enforce LFI conditions.

5. Thelink tablestores, for each neighbork, the costlik of the
adjacent link to the neighbor.

The unit of information exchanged between routers is a link-
state update (LSU) message. A router sends an LSU message con-
taining one or more entries, with each entry specifyingaddition,
deletionor changein cost of a link in the router’s main topology
tableT i. Each entry of an LSU consists of link information in the
form of a triplet[h; t; d]whereh is the head,t is the tail, andd is the
cost of the linkh! t. An LSU message contains an acknowledg-
ment (ACK) flag for acknowledging the receipt of an LSU message
from a neighbor (used only by MPDA).

The INIT-PDA procedure in Fig. 1 initializes the tables of a
router at startup time; all variables of type distance are initialized
to infinity and those of type node are initialized to null. All suc-
cessor sets are initialized to the empty set. PDA is executed each
time an event occurs; an event can be either a receipt of an LSU
message from a neighbor or the detection of an adjacent link-cost
change. Procedure NTU (Neighbor Topology Table Update) shown
in Fig. 2 is used to process the received message and update the nec-
essary tables. Procedure MTU in Fig. 3 constructs the router’s own
shortest path tree from the topologies reported by its neighbors.
The new shortest-path tree obtained is compared with the previous
version to determine the differences; only the differences are then
reported to the neighbors. The router then waits for the next event
and, when it occurs, the whole process is repeated.

The algorithm MTU at routeri merges the topologiesT i
k and

the adjacent linkslik to obtainT i. The merge process is straight-
forward if all neighbor topologies contain disjoint sets of links, but
when two or more neighbors report conflicting information regard-
ing a particular link, the conflict has to be resolved. Sequence num-
bers may be used to distinguish between old and new link informa-
tion as in OSPF, but PDA resolves the conflict as follows. If two or
more neighbors report information of link(m; n) then the routeri
should update topology tableT i with link information reported by

procedure NTU
begin

(1) if (LSU message is received from a neighbork) then
(1a) Update neighbor tableT i

k
. That is, add links,

delete links or change links according to the
specification of each entry in the LSU;

(1b) Run Dijkstra’s shortest path algorithm
on the resulting topologyT i

k
; /*This results in

finding minimum distances fromk to all other
nodes inT i

k
. NoteT i

k
is a tree*/

(1c) UpdateDi
jk

with new distances inT i
k

;
endif

(2) if (adjacent link(i; k) is up) then
Updateli

k
and send an LSU message to the

neighbork with link information of all links in
its main topology tableT i;

endif
(3) if (cost of an adjacent link(i; k) changed)then

Updateli
k

;
endif

(4) if (adjacent link(i; k) failed)then
Updateli

k
and clear the tableT i

k
;

endif
end NTU

Figure 2: Neighbor Topology Table Update algorithm

the neighbor that offers the shortest distance from the routeri to the
head nodem of the link. Ties are broken in favor of neighbor with
the lowest address. For adjacent links, routeri itself is the head of
the link and thus has the shortest distance. Therefore, any informa-
tion about an adjacent link supplied by neighbors will be overridden
by the most current information about the link available to router
i. Dijkstra’s shortest path algorithm is run onT i and only the links
that constitute the shortest-path tree are retained. Note that, be-
cause there are potentially many shortest-path trees, ties should be
broken consistently during the run of Dijkstra’s algorithm.

In what follows, we show that PDA works correctly by showing
that the topology tables at all nodes converge to the shortest paths
within a finite time after the last link cost change in the network.
After convergence, because there are no more changes to the topol-
ogy tables, no more LSU messages are generated.

Definitions: Then-hop minimum distance of routeri to nodej
in a network is the minimum distance possible using a path ofn
links or less. A path that offers then-hop minimum distance is
calledn-hop minimum path. If there is no path withn hops or less
from routeri to j then then-hop minimum distance fromi to j is
undefined. Ann-hop minimum tree of a nodei is a tree in which
routeri is the root and all paths ofn hops or less from the root to
any other node is ann-hop minimum path. Note that there could
be more than onen-hop minimum tree.

Let G denote the final topology of the network after all link
changes occurred as seen by an omniscient observer; we use bold
font to refer to all quantities inG. LetHi

n denote ann-hop min-
imum tree rooted at routeri in G and letMi

n be the set of nodes
that are withinn hops fromi in Hi

n. LetDi;j
n denote the distance

of i to j inHi
n. Letdij be the cost of the linki! j. The notation

i; j indicates a path fromi to j of zero or more links.

Property 2 From the principle of optimality (a sub-path of a short-
est path between two nodes is also a shortest path between the end
nodes of the sub-path), ifH andH 0 are twon-hop minimum trees
rooted at routeri andM andM 0 are sets of nodes that are within
n hops fromi in H andH 0 respectively, thenM = M 0 = Mi

n.
Also, for eachj 2Mi

n the length of pathi; j in bothH andH 0

is equal toDi;j
n . Also,Di;j

h � Di;j
n if h � n.



procedure MTU at routeri
begin

(1) oldT i  T i;/* Save copy */
(2) if (nodej occurs in at least one ofT i

k
) then

addj to the main topology tableT i;
endif

(3) foreach nodej in T i do
MIN  minfDi

jk
+ li

k
jk 2 N ig;

let p be such thatMIN = (Di
jp

+ lip);
/* Neighborp is the preferred neighbor for
destinationj. Ties are broken in favor of
lower address neighbor */

done
(4) foreach j in T i and its preferred neighborp do

Copy all links(j; n) from T ip to T i;
/* i.e., copy all links inT ip for which
j is the head node */

done
(5) UpdateT i with information of eachli

k
;

(6) Run Dijkstra’s shortest path algorithm onT i

and remove those links inT i that arenot
part of the shortest path tree;

(7) UpdateDi
j with new distances inT i;

(8) CompareoldT i with T i and note all differences;
end MTU

Figure 3: Main Topology Table Update Algorithm

We say a routeri knows at leastthen-hop minimum tree, if the
tree represented by its main topology tableT i is at least ann-hop
minimum tree rooted ati inG and there are at leastn nodes inT i

that are reachable from the rooti. Note that the links inT i that are
more thann hops may have costs that do not agree with the link
costs inG.

Lemma 1 If a router i has the final correct costs of the adjacent
links and for each neighbork the topologyT i

k is ann-hop minimum
tree, then the topologyT i is (n + 1)-hop minimum tree after the
execution of MTU.

Proof: The proof is presented in the Appendix.2

Theorem 2 At each routeri, the main topologyT i gives the cor-
rect shortest paths to all known destinations a finite time after the
last change in the network.

Proof: The proof is by induction ontn, the global time when
for each routeri, T i is at leastn-hop minimum tree. Because the
longest loop-free path in the network has at mostN�1 links where
N is number of nodes in the network,tN�1 is the time when every
router has the shortest path to every other node. We need to show
that tN�1 is finite. The base case ist1, the time when every node
has 1-hop minimum distance and because the adjacent link changes
are notified within finite time,t1 < 1. Let tn < 1 for some
n < N . Given that the propagation delays are finite each router
will have each of its neighborsn-hop minimum tree in finite time
after tn. From Theorem 1 we can see that the router will have
at least the(n + 1)-hop minimum tree within a finite time after
tn. Therefore,tn+1 < 1. From induction, we can conclude that
tN�1 <1. 2

4.1.2 Computing Sij

The LFI conditions introduced in Section 3 suggest a technique for
computingSij such that the implied routing graphSGj is loop-
free at every instant. To determineFDi

j in Eq.(16), routeri needs
to knowDk

ji, the distance fromi to nodej in the topology table

procedure MPDA at routeri
finvoked when an event occursg
begin

(1) call NTU;
(2) if (node is in PASSIVE state)then

(2a)call MTU; /* updateT i andDi
j

*/
(2b)FDi

j
 minfFDi

j
; Di

j
g;

endif
(3) if (node is in ACTIVE state and the

last ACK is received)then
(3a)tempi

j
 Di

j
; Set node to PASSIVE state;

(3b) call MTU to updateT i;
(3c)FDi

j
 minftempi

j
; Di

j
g

endif
(4) Si

j
 fkjDi

jk
< FDi

j
g;

(5) if (changes occur inT i)then
Set node to ACTIVE state;

endif
if (no changes occur inT i and the event is

the last ACK)then
Set node to PASSIVE state;

endif
(6) if (there are changes toT i) then

Compose a new LSU with the topology
changes expressed asadd link,
deletelink andchangelink;

endif
(7) if (input event received is an LSU message)then

Add the ACK entry to newly composed LSU;
endif

(8) Send the new LSU message.
end MPDA

Figure 4: Multiple-path Partial-topology Dissemination Algorithm
(MPDA)

T k
i . Because of propagation delays, there may be discrepancies

between the main topology tableT i at routeri and its copyT k
i

at the neighbork. However, at timet, the topology tableT k
i is a

copy of the main topology tableT i at some earlier timet0 < t.
Logically, if a copy ofDi

j is saved each time an LSU is sent, a
feasible distanceFDi

j that satisfies the LFI conditions can be found
in the history of values ofDi

j that have been saved!
The multiple-path partial-topology dissemination algorithm, or

MPDA, shown in Fig. 4 is a modification of PDA that enforces the
LFI conditions by synchronizing the exchange of LSUs between
neighbors. In MPDA, each LSU message sent by a router is ac-
knowledged by all its neighbors before the router sends the next
LSU. The inter-neighbor synchronization used in MPDA spans only
a singlehop, unlike the synchronization in diffusing computations
[7] which potentially spans the whole network. A router is said
to be in ACTIVE state when it is waiting for its neighbors to ac-
knowledge the LSU message it sent; otherwise, it is in PASSIVE
state.

Assume that, initially, all routers are in PASSIVE state with
all routers having the correct distances to all destinations. Then a
series of link cost changes occurs in the network resulting in some
or all routers to go through a sequence of PASSIVE-to-ACTIVE
and ACTIVE-to-PASSIVE state transitions, until all routers be-
come PASSIVE with correct distances to destinations.

If a router in a PASSIVE state receives an event that does not
change its topologyT i, then the router has nothing to report and
remains in PASSIVE state. However, if a router in PASSIVE
state receives an event that affects a change in its topology, the
router sends those changes to its neighbors, goes into ACTIVE
state and waits for ACKs. Events that occur during the ACTIVE
period are processed to updateT i

k andlik but notT i; the updating
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Figure 5: Active-passive phase transitions in MPDA.

of T i by MTU is deferred until the end of the ACTIVE phase.
At the end of the ACTIVE phase, when ACKs from all neighbors
are received, routeri updatesT i with changes that may have oc-
curred inT i

k due to events received during the ACTIVE phase. If
no changes occurred inT i that need reporting, then the router be-
comes PASSIVE; otherwise, as shown in Fig. 5, there are changes
in T i that may have resulted due to events and the neighbors need
to be notified. This results in a new LSU, and the router immedi-
ately becoming ACTIVE again. In this case, there is an implicit
PASSIVE period, of zero length of time, between two back-to-
back ACTIVE periods, as illustrated in Fig. 5. A routeri receiving
an LSU message fromk must send back an LSU with the ACK bit
set after updatingT i

k. If the router does not have any updates to
send, either because it is in ACTIVE state or because it does not
have any changes to report, it sends back an empty LSU with just
the ACK flag set. When a router detects that an adjacent link failed,
any pending ACKs from the neighbor at the other end of the link
are treated as received. Because all LSUs are acknowledged within
a finite time, no deadlocks can occur.

The following theorem proves that MPDA provides loop-free
multipaths at every instant.

Theorem 3 (Safety property) At any timet, the directed graph
SGj(t) implied by the successor setsSij(t) computed by MPDA
at each router is loop-free.

Proof: The proof is presented in the Appendix, and is based on
showing thatFDi

j andSij , as computed by MPDA, satisfy the LFI
conditions.2

Theorem 4 (Liveness property) A finite time after the last change
in the network,Di

j gives the correct shortest distance and

Sij = fkjDk
j < Di

j ; k 2 N ig at each routeri

Proof: The convergence of MPDA follows directly from the
convergence of PDA, because the update messages in MPDA are
only delayed a finite time as allowed in line 4 in algorithm PDA.
Therefore, the distancesDi

j in MPDA also converge to shortest dis-
tances. Because changes toT i are always reported to the neighbors
and are incorporated by the neighbors in their tables in finite time,
Di
jk = Dk

j for k 2 N i after convergence. From line 3c in MPDA,
we observe that when routeri becomes PASSIVE, andFDi

j = Di
j

holds true. Because all routers are PASSIVE at convergence time
it follows that the setfkjDi

jk < FDi
j ; k 2 N ig is the same as the

setfkjDk
j < Di

j ; k 2 N ig. 2

4.2 Distributing Tra�c over Multiple Paths

In general, the function	 can be any function that satisfies Prop-
erty 1, but our objective is to obtain a function	 that performs
load balancing that is as close as possible to perfect load balancing
(Eqs.(10)-(12)).

procedure IH
begin

(1) 8k =2 Si
j
; �i

jk
 0;

(2) if (jSij j = 1) then
8k 2 Sij ; �

i
jk
 1;

endif
(3) if (jSi

j
j > 1) then

�i
jk
 

1�
Di
jk

+li
kP

m2Si
j

(Di
jm

+lim)

(jSi
j
j�1)

; 8k 2 Si
j
;

endif
end IH

Figure 6: Heuristic for initial load assignment.

procedure AH
begin

(1)Dij
min
 minfDi

jk
+ li

k
jk 2 Si

j
g;

(2) let Dij
min = (Di

jk0
+ li

k0
);

// That is,k0 be the neighbor
that offers this minimum)

(3) foreachk 2 Sij do

ai
jk
 Di

jk
+ li

k
�Dij

min;
done

(4)� 1
2
minf

�i
jk

ai
jk

jk 2 Sij ^ a
i
jk
6= 0g;

(4) foreachk 6= k0 ^ k 2 Sij do
�i
jk
 �i

jk
��� ai

jk
;

done
(5) for k = k0 do

�i
jk
 �i

jk
+
P

q2Si
j

�� aijq ;

done
end AH

Figure 7: Heuristic for incremental load adjustment.

The function	 should also be suitable for use in dynamic net-
works, where the flows over links are continuously changing, caus-
ing continuous link-cost changes. To respond to these changes,
queueing delays at the links must be measured periodically and
routing paths must be recomputed. However, re-computing paths
frequently consumes excessive bandwidth and may also cause os-
cillations. Therefore, routing-path changes should only be done
at sufficiently long intervals. Unfortunately, a network cannot be
responsive to short-term traffic bursts if only long-term updates
are performed. For this reason, we use link costs measured over
two different intervals; link costs measured over short intervals
of lengthTs are used for routing-parameter computation and link
costs measured over longer intervals of lengthTl are used for routing-
path computation [17]. In general,Tl must be several times longer
thanTs. Long-term updates are designed to handle long-term traf-
fic changes and are used by the routing protocol to update the suc-
cessor sets at each router, so that the new routing paths are the short-
est paths under the new traffic conditions. The short-term updates
made everyTs seconds are designed to handle short-term traffic
fluctuations that occur between long-term routing path updates and
are used to compute the routing parameters�ijk in Eq. (15) lo-
cally at each router. Accordingly, our traffic distribution heuristics
assume a constant successor set and successor graph.

WhenSij is computed for the first time or recomputed again due
to long-term route changes, traffic should be freshly distributed. In
this case, the allocation heuristic function	 is a function of only
the marginal distances through the successor set. That is, Eq. (15)



reduces to the formf�ijkg = 	(k; fDp
j + lipjp 2 N ig). When a

new successor setSij is computed, algorithm IH in Fig. 6 is first
used to distribute traffic over the successor set [17]. Note that
f�ijkg, computed in IH, satisfy Property 1. Furthermore, when
more than one successor is present, ifDi

jp + lip > Di
jq + liq for

successorsp andq, then�ijp < �ijq. The heuristic makes sense be-
cause the greater the marginal delay through a particular neighbor
becomes, the smaller the fraction of traffic that is forwarded to that
neighbor.

After the first flow assignment is made over a newly computed
successor set using algorithm IH, a different flow allocation heuris-
tic algorithm AH shown in Fig. 7 is used to adjust the routing pa-
rameters everyTs seconds until the successor set changes again.
The heuristic function	 computed in AH is incremental and, un-
like IH, is a function of current flow allocation on the successor
sets and the marginal distances through the successors. AH also
preserves Property 1 at every instant. In AH traffic is incremen-
tally moved from the links with large marginal delays to links with
the least marginal delay. The amount of traffic moved away from
a link is proportional to how large the marginal delay of the link
is compared to the best successor link. The heuristic tends to dis-
tribute traffic in such a way that Eqs. (10)-(12) hold true. This
is important, because the initial distribution obtained by IH is far
from being balanced. The computation complexity of the heuristic
allocation algorithms isO(N i). Because the heuristics are run for
each active destination, the whole load-balancing activity isO(N).

Unlike � in Gallager’s algorithm,Tl andTs are local constants
that are set independently at each router. Convergence of our al-
gorithm does not critically depend on these constants like optimal
routing does on�. Also, Tl andTs need not be static constants
and can be made to vary according to congestion at the router. The
value ofTl, however, should be such that it is sufficiently longer
than the time it takes for computing the shortest paths. The long-
term update periods should be phased randomly at each router, be-
cause of the problems that would result due to synchronization of
updates [3].

4.3 Computing Link Costs

As mentioned earlier, the cost of a link is the marginal delay over
the linkD0(fik).

If the links are assumed to behave like M/M/1 queues, then the
marginal delayD0(fik) can be obtained in a closed form expression
by differentiating the following equation [16].

Dik(fik) =
fik

(Cik � fik)
+ �ikfik (24)

where fik is the flow through the link(i; k), andCik and �ik
are the capacity and propagation delay of the link. Because the
M/M/1 assumption does not hold in practice in the presence of
very bursty traffic, and because Eq. (24) becomes unstable when
fik approachesCik, an on-line estimation of the marginal delays is
desirable.

There are several techniques for computing marginal delays
that are currently available (e.g., [23, 22, 6]). For the purposes
of simulations, we borrow a technique introduced by Cassandras,
Abidi and Towsley [6] for on-line estimation of the marginal de-
layD0(fik). The technique uses perturbation analysis (PA) for the
on-line estimation and is shown to perform better than the M/M/1
estimation. In addition, the PA estimation does not require a priori
knowledge of the link capacities. This is very significant, because
the capacity available to best-effort traffic in real networks varies
according to the capacity allocated to other types of traffic, such as
real-time traffic. We must emphasize that our approach does not
depend on which specific technique is used for marginal-delay es-
timation, although some methods may be better than others. The
convergence or stability of our routing algorithm does not depend
on the specific technique used for marginal-delay estimation.
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Figure 8: Topologies used in simulations

5 Simulations

The simulations discussed in this section illustrate the effectiveness
of our near-optimal framework, and demonstrate the significant im-
provements achieved by our approach over single-path routing in
static and dynamic environments. The delays obtained by opti-
mal routing, single-path routing and our approximation scheme are
compared under identical topological and traffic environments. The
results show that the average delays achieved via our approxima-
tion scheme are comparable (within a small percentage difference
rather than several times difference) to the optimal routing under
quasi-static environment and the same are significantly better than
single-path routing in a dynamic environment.

For optimal routing, we implemented the algorithm described
by Gallager [8], and label it with ’OPT’. The plots of our approx-
imation scheme are labeled with ’MP’. To obtain representative
delays for single-path routing algorithms, we opted to restrict our
multipath routing algorithm to use only the best successor for packet
forwarding, instead of simulating any specific shortest-path algo-
rithm. Because of the instantaneous loop-freedom property that
MPDA exhibits, the shortest-path delays obtained this way are bet-
ter than or similar to the delays obtained with either EIGRP [1],
which is based on DUAL and requires much more internodal syn-
chronization than our scheme, rendering longer delays, and RIP [14]
or OSPF [20], which do not prevent temporary loops. We use the
label ’SP’ for single-path routing in the graphs.

We performed simulations on the topologies shown in Fig. 8.
CAIRN (www.cairn.net) is a real network and NET1 is a contrived
network. We are only interested in the connectivity of CAIRN,
and its topology as used differs from the real network in the ca-
pacities and propagation delays assumed in the simulation experi-
ments. We restricted the link capacities to a maximum of 10Mbs,
so that it becomes easy to sufficiently load the networks. NET1
has a connectivity that is high enough to ensure the existence of
multiple paths, and small enough to prevent a large number of one-
hop paths. The diameter of NET1 is four and the nodes have de-
grees between 3 and 5. In each network we setup flows between
several source-destination pairs and measure the average delays of
each flow. The flows in CAIRN are setup between these source-
destination pairs: (lbl, mci-r),(netstar, isie), (isi, darpa), (parc, sdsc),
(sri, mit) ,(tioc, sdsc),(mit, sri),(isie, netstar), (sdsc, parc),(mci-r,
tioc),(darpa, isi). For NET1, the source-destination pairs are: (9,2),
(8,3), (7,0), (6,1), (5,8), (4,1), (3,8), (2,9), (1,6), (0,7).

The flows have bandwidths in the range 0.2-1.0 Mbs. For sim-
plicity, we used a stable topology (links or nodes do not fail) in
all the simulations. In the presence of link failures, MP can only
perform better than SP, because of availability of alternate paths.
Furthermore, OPT is not fast enough to respond to drastic topology
changes. Because MP is parameterized by theTl andTs update in-
tervals, its delay plots are represented by MP-TL-xx-TS-yy, where
xx is theTl update interval andyy is theTs update interval mea-
sured in seconds. Similarly, the delays of shortest-path routing are
represented by SP-TL-xx, wherexx is theTl update period.
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Figure 9: Delays of OPT and MP in CAIRN.
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Figure 10: Delays of OPT and MP in NET1.

5.1 Performance under Stationary Tra�c

Fig. 9 shows the average delays of flows in CAIRN for OPT and
MP routing. The flow IDs are plotted on the x-axis and average de-
lays of the flows are plotted on the y-axis. Plot OPT-25 represents
the 25% ’envelope’, that is, the delays of OPT are increased by
25% to obtain the OPT-25 plot. As can be seen, the average delays
of flows under MP routing are within the OPT-25 envelope. Sim-
ilarly, in Fig. 10, the delays obtained using MP routing for NET1
are within 28% envelopes of delays obtained using OPT routing.
We say delays of MP are ’comparable’ to OPT if the delays of MP
are within a small percent of those of OPT.

Fig. 11 compares the average delays of MP and SP for CAIRN.
We observe that the delays of SP for some flows are two to four
times those of MP. In Fig. 12, for NET1, MP routing performs
even better; average delays of SP are as much as five to six times
those of MP routing which is due to higher connectivity available
in NET1. Also observe that, because of load-balancing used in MP,
the plots of MP are less jagged than those of SP. MP routing per-
forms much better than SP under high-connectivity and high-load
environments. When connectivity is low or network load is light,
MP routing cannot offer any advantage over SP.
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Figure 11: Delays of MP and SP in CAIRN.
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5.2 E�ect of Tuning Parameters Tl and Ts

The performance of MP depends on the update intervalsTl and
Ts. The setting ofTl andTs, however, is simple. They are local
and can be set independently at each node without affecting con-
vergence, unlike the global constant� which is critical for conver-
gence of OPT. For CAIRN, Fig. 13 show the effect of increasing
Tl whenTs and the input traffic is fixed. Observe that whenTl is
increased from 10 to 20 seconds, the delays in SP have more than
doubled, while the delays of MP remain relatively unchanged. This
effect indicates thatTl can be made longer in MP without signifi-
cantly effecting performance. This is significant, because sending
frequent update messages consume bandwidth and can also cause
oscillations under high loads. Similarly, for NET1, delays for SP
increased significantly while there is negligible change in delays of
MP as can be observed in Fig. 14, respectively. Our new rout-
ing framework provides the means for a trade-off between update
messages and local load-balancing.

At Ts intervals, the load-balancing heuristics are executed, which
are strictly local computations and require no communication. There-
fore, Ts can be set according to the processing power available at
the router. Tl can be made from a few times to orders of mag-
nitude greater thanTs. In the simplest case,Ts can be set to the
same value ofTl andstill gain significant performance as shown
in Figs. 11 and 12. In the figures, we observe that MP-TL-10-TS-
10 is much closer to OPT than SP-TL-10. Just the long-term routes
with load-balancing, without short-term routing parameter updates,
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Figure 13: Delays whenTs is kept constant andTl is increased in
CAIRN.
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Figure 14: Delays whenTs is kept constant andTl is increased in
NET1.

seem to give significant gains; the major gains here are due to the
mere presence of multiple successors and load-balancing. Our ex-
perience from simulations indicates that aTl that is only a few
times of longer thanTs suffices to gain significant benefits. This
is great news, because it means that fine tuning ofTl andTs is not
important for our approach to be efficient.

5.3 Performance under Dynamic Tra�c

It was stated earlier that OPT has very poor response to traffic fluc-
tuations. This becomes evident in Fig. 15, which shows a typical
response in NET1 when the flow rate is a step function (i.e.., the
flow rate is increased from 0 to a finite amount at time 0). The
dampened response of the network using MP indicates the fast re-
sponsiveness of MP, making it suitable for dynamic environments.
Because OPT cannot respond fast enough to traffic fluctuations, it is
impossible to find the optimal delays for dynamic traffic. However,
we can find a reasonable lower bound if the input traffic pattern
is predictable like the pattern shown in Fig 16, which shows only
one cycle of the input pattern. To obtain a lower bound for this
traffic pattern that represents ’ideal’ OPT (the one that has instan-
taneous response) we first obtain the lower bound for each interval
during which traffic is steady by running a separate off-line simula-
tion with traffic rate that corresponds to that interval, and combine
the results to obtain thelower bound. It is with this lower bound
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Figure 15: Step response in NET1 using OPT and MP routing.
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that we compare delays of MP. Fig. 17 shows the average delays
of the flows for OPT, MP and SP routing. The results indicate that
delays of MP routing are again in the comparable range of delays
of an ’ideal’ optimal-routing algorithm.

Ultimately, MP will be used in real networks where traffic is
bursty at any time-scale; therefore, it is important to see how MP
performs in that environment. We extracted 10 flows from the In-
ternet traffic traces obtained from LBL [21] and used them as input
for the 10 flows in the CAIRN. Fig. 18 shows the delays for SP and
MP. We do not perform this simulation with OPT because Internet
traffic is too bursty for OPT to converge. Observe that, except for
flows 4, 6 and 8, delays of MP are much better than those of SP.
The reason SP delays of these flows are better than those of MP
is because of uneven distribution of load in the network and low
loads in some sections of the network — in low-load environments
SP can perform slightly better than MP. This can be easily rectified
by modifying IH to use a small threshold cost for the best link, the
crossing of which actually triggers the load-balancing scheme.

6 Conclusions

We have presented a practical approach to near-optimal delay rout-
ing in computer networks. To overcome the limitations of opti-
mal routing algorithms, we proposed an approximation scheme and
suggested algorithms that implement various components of the ap-
proximation. The resulting framework is both implementable in
real networks and also provides delays that are close to those ob-
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tainable using the Gallager’s method. An important element of our
framework is our generalization of sufficient conditions for loop-
free routing, which are applicable to any type of routing algorithm.

We presented one of many possible implementations of the new
routing framework. In doing so, we introduced the first link-state
routing algorithm that provides multiple paths that are loop-free
at every instant and that need not be of equal cost. We have shown
through simulations that our implementation of the proposed frame-
work performs significantly better than single-path routing, and
that it offers delays that are within a small percentage of the lower
bound delays under stationary traffic. The simulations are by no
means exhaustive, but the results clearly indicate that the frame-
work does offer potential for obtaining delays that compare with
the optimal routing.

Additional work is needed to study flow allocation heuristics
that are better suited for specific end-to-end services, e.g., trying
to avoid out-of order packets for certain flows. Furthermore, our
new routing framework opens up many interested research oppor-
tunities for quality-of-service (QoS) routing, because the loop-free
invariant conditions on which it is based can be further constrained
to satisfy different types of service. Similarly, because the traffic
allocation heuristics depend on local rather than global parameters
and, new heuristics can be defined to account for QoS constraints.
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Appendix

Proof of Lemma 1: Let Ai =
S

k2Ni A
i
k whereAi

k is the
set of nodes inT i

k. SinceT i
k is at least a(n � 1)-hop minimum

tree and nodei can appear at most once in each ofAi
k, eachAi

k

has at leastn� 1 unique elements. ThereforeAi has at leastn� 1
elements.

Let M i
n be the set ofn � 1 nearest elements to nodei in Ai.

That isM i
n � Ai andjM i

nj = n�1 and for eachj 2M i
n andv 2

Ai �M i
n,minfDi

jk + likjk 2 N ig � minfDi
vk + likjk 2 N ig.

The theorem is proved in the following two parts:

1. LetGi
n represent the graph constructed by MTU on line 4

and 5. (i.e., before applying Dijkstra on line 6). For each
j 2M i

n there is a pathi; j in Gi
n such that its length is at

mostDi;j
n .

2. After running Dijkstra onGi
n on line 6 in MTU, the resulting

tree is at least ann-hop minimum tree.

Let us first assume Part 1 is true and prove Part 2, and then
proceed to prove Part 1. From the statement in Part 1, for each
nodej 2M i

n there is a pathi; j in Gi
n with length at mostDi;j

n .
After running Dijkstra’s algorithm, in the resulting graph, we can
infer that there is a pathi ; j with length at mostDi;j

n . Because
there aren � 1 nodes inM i

n, the tree constructed has at leastn
nodes with nodei included. Accordingly, it follows from Property
1 that the tree constructed is at least ann-hop minimum tree.

Now we prove Part 1. Order the nodes inM i
n in non-decreasing

order. The proof is by induction on the sequence of elements inM i
n

as they are added toGi
n. The base case is whenGi

n contains just
one link lim1

= minflikjk 2 N ig andm1 is the first element of
M i andlim1

= Di;m1

1 : Let the statement hold for the firstm� 1

elements ofM i
n and consider them-th elementj 2M i

n. LetK be
the highest priority neighbor for whichDi

jK + liK = minfDi
jk +

likjk 2 N ig. At Most m � 2 nodes inT i
K can have a smaller or

equal distance thanj, which implies pathK ; j exists with at
mostm� 1 hops. Letv be the neighbor ofj in T i

K . Then the path
K ; v ! j has at mostm � 1 hops. BecauseT i

K is at least a
(n� 1)-hop minimum tree, the cost of linkv ! j must agree with
G. SinceDi

vK + liK < Di
jK + liK , from our inductive hypothesis

, there is a pathi; v in Gi
n such that the length is at mostDi;v

n .
Now we need to show that the preferred neighbor forv is also

K, so that the linkv ! j will be included in the construction
of Gi

n, thus ensuring the existence of the pathi ; j in Gi
n. If

some other neighborK0 instead ofK is the preferred neighbor for
v, then one of the following two cases should have occurred: (a)
Di
vK0 + liK0 < Di

vK + liK or, (b)Di
vK0 + liK0 = Di

vK + liK and
priority of K0 is greater than priority ofK.

Case (a): IfDi
vK0 + liK0 < Di

vK + liK , then given thatDi
jK +

liK � Di
jK0 + liK0 it follows that the pathv ; j in T i

K0 is greater
than costv ! j in G which implies thatT i

K0 is not a(n � 1)
hop minimum tree – a contradiction to our assumption! Therefore,
Di
vK + liK = minfDi

vk + likjk 2 N ig.
Case (b): LetQj be the set of neighbors that give the minimum

distance toj, i.e., for eachk 2 Qj , Di
jk + lik = minfDi

jk +

likjk 2 N ig. Similarly, letQv be such that for eachk 2 Qv,
Di
vk + lik = minfDi

vk + likjk 2 N ig. If k 2 Qv andk =2 Qj ,
then it follows from the same argument used in case (a) thatv ; j
in T i

k is greater thanv ! j in G, which implies thatT i
k is not

a (n � 1)-hop minimum tree – a contradiction to our assumption
again. Therefore,Qv � Qj . Also, from the same argument used
in case (a) above it can be inferred thatK 2 Qv. BecauseK has
the highest priority among all members ofQj andQv � Qj , and
becausek 2 Qv, K must also have the highest priority among all

members ofQv. This proves thatv ! j will be included in the
construction ofGi

n. BecauseDi;v
n + dvj = D

i;j
n inG, wheredvj

is the final cost of linkv ! j, and the length ofi ; v in Gi
n is

less thanDi;v
n from our inductive hypothesis, we obtained that the

length of i ; j in Gi
n less thanDi;j

n . This proves Part 1 of the
theorem.2

Proof of Theorem 3: Let tn be the time whenFDi
j is updated

for then-th time. The proof is by induction on the time intervals
[tn; tn+1]. As inductive hypothesis assume that

FDi
j(t) � Dk

ji(t) k 2 N i; t � tn (25)

We show that

FDi
j(t) � Dk

ji(t) t 2 [tn; tn+1] (26)

We observe from the description of MPDA in Fig. 4 that, when
FDi

j is updated at lines 2b and 3c,Di
j is also updated at lines 2a

and 3b respectively. We also observed thatFDi
j is updated only

during state transitions, and regardless of whether the transition is
from PASSIVE-to-ACTIVE or from ACTIVE-to-PASSIVE, the
Eq. (27) below is true. Note that there is an implicit PASSIVE
state between two back-to-back ACTIVE states.

FDi
j(tn) � minfDi

j(tn�1); D
i
j(tn)g (27)

Let t0 be the time when LSU sent byi at tn is received and pro-
cessed by neighbork. Because of the non-zero propagation delay
across any link,t0 is such thattn < t0 < tn+1. We then have

Dk
ji(t

0) = Di
j(tn) (28)

BecauseFDi
j is modified attn and then remains unchanged

within (tn; tn+1), we obtain from Eq. (25) that

FDi
j(t) � Dk

ji(t) t 2 [tn; t
0) (29)

From Eqs. (27) and (28) we obtain the following.

FDi
j(t) � Dk

ji(t) t 2 [t0; tn+1) (30)

From Eq. (29) and (30) we have

FDi
j(t) � Dk

ji(t) t 2 [tn; tn+1) (31)

At tn+1, again from the design of MPDA we have,

FDi
j(tn+1) � minfDi

j(tn); D
i
j(tn+1)g (32)

Also, because propagation delays are positive, nodek at tn+1

cannot yet have the valueDi
j(tn+1). So, we have

Dk
ji(tn+1) = Di

j(tn) (33)

Combining Eq. (33) and (32) for timetn+1, we get

FDi
j(tn+1) � Dk

ji(tn+1) (34)

and Eq. (26) follows from combining Eqs. (31) and (34).
BecauseFDi

j(t0) � Dk
ji(t0) at initialization, from induction

we have thatFDi
j(t) � Dk

ji(t) for all t. Given that the successor
sets are computed based onFDi

j , it follows that the LFI conditions
are always satisfied. According to Theorem 1, this implies that the
successor graphSGj is always loop-free.2


